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A formalism is developed whereby balance laws are directly obtained from 
nonlocal (integrodifferential) linear second-order equations of motion for sys- 
tems described by several dependent variables. These laws augment the equations 
of motion as further useful information about the physical system and, under 
certain conditions, are shown to reduce to conservation laws. The formalism can 
be applied to physical systems whose equations of motion may be relativistic 
and either classical or quantum. It is shown to facilitate obtaining global conserva- 
tion laws for quantities which include energy and momentum. Applications of 
the formalism are given for a nonlocal Schrgdinger equation and for a system 
of local relativistic equations of motion describing particles of arbitrary integral 
spin. 

1. I N T R O D U C T I O N  

C o n t e m p o r a r y  physic is ts  try to u n d e r s t a n d  na ture  at a f u n d a m e n t a l  
level t h rough  at least  two jus t i f iable  beliefs .  One  o f  these may  be charac te r -  
ized by  the "be l i e f  o f  cons tancy  th rough  change , "  and  finds its express ion  
in " conse rva t i on  laws."  The  o ther  may  be  charac te r i zed  by  the " be l i e f  in 
d y n a m i c a l  evo lu t ion , "  and  finds its express ion  in " equa t ions  o f  m o t i o n "  
( somet imes  referred to as " laws  o f  mo t ion" ) .  [ F u r t h e r  comment s  can be 
found  in A p p e n d i x  B, note  1; des igna ted  {B1}]. 

A th i rd  a p p r o a c h  to u n d e r s t a n d i n g  na tu re  at a bas ic  level [pa r t i cu la r ly  
in con t inuum mechanics ;  see, e.g., Scipio  (1967)] is by  means  o f  " b a l a n c e  
laws ."  Such laws are in some  sense a connec t ion  be tween  conse rva t ion  laws 
(to which  they  somet imes  reduce)  and  laws o f  mo t ion  ( f rom which ba l a nc e  
laws are somet imes  der ived) .  Thei r  re levant  different ia l  (poin t )  form (which  
may  inco rpo ra t e  integrals) is schemat ized  here,  for  an a p p r o p r i a t e  
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coordinate system (to make connection with usual nonrelativistic notation), 
a s  

OW 
- - + V - T = R  Ot 

where t is the time, W is the density of some property, T (a "flow" term) 
and R (a "source" term) are also related to this property, V. is a generalized 
divergence (excluding time) of T. ( W, T, and R may be tensors.) The integral 
law of balance for a body B may then be written as 

fB O-----Wdv=-fBOt V. TdV+ Iu RdV 

where dV is a generalized volume element. 
The former equation will be referred to as the point form of a nontocal 

(local) law or "equation of balance" if it does (does not) contain integrals. 
When the R term is absent, it will be referred to as a nonlocal (or local) 
"continuity equation" or law. The latter type of equation involving integrals 
which may include the entire system (over B, for example, if all fields are 
confined to the body) will always be referred to as a "global" law or 
equation. Finally, an equation showing the ordinary time derivative of a 
quantity to be zero relative to a particular coordinate system is called a 
"conservation law," the point form of that law being nonlocal if the quantity 
contains integrals (e.g., over other parts of B) {B2}. 

In order to utilize the variational calculus related to a physical system's 
equations of motion (or imbed the equations of motion in a variational 
statement {B3}), an appropriate Lagrangian must be found. This is usually 
done by "educated guessing," although fairly general methods are available. 
For local laws of motion (i.e., laws described by differential equations) this 
imbedding can be seen in electromagnetic theory (Gelfand and Fomin, 
1963), diffusion theory (Biot, 1970), nonrelativistic mechanics and special 
relativistic dynamics (Lanczos 1970), and quantum field theory (Byron and 
Fuller 1969, Chapter 2). 

For nonlocal laws of motion (usually described by integrodifferential 
equations) an attempt to imbed the equation in a variational statement is 
generally even more difficult {B4}. Such imbedding is (as for local laws) 
important for a number of reasons, one of which is to facilitate computation 
of conserved quantities. Furthermore, nonlocal laws pertain to a large class 
of physical systems. Examples can be found in elasticity theory {B5}, 
radiative transport theory (Edelen, 1973), thermodynamics of fluids {B6}, 
electromagnetic theory {B7}, Fokker-type interactions; ({BS}; Havas, 1973), 
quantum mechanics {B9}, and quantum field theory [see the early paper 
by Ebel (1954)] {B10}. [A copious list of references is given in {Bll}.] 
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The book by Edelen (1969a) (hereafter referred to as NV) based on 
an earlier series of papers (Edelen, 1969b) {B12} solves the nonlocal vari- 
ational imbedding problem for a rather general Lagrangian. It also describes 
general relationships of  conserved quantities to arbitrary Lagrangians by 
means of "energy-momentum complexes" arising from an extension of 
Noether's theorem (Noether, 1918; Edelen, 1971a-d)  {B13}. 

However, it would be interesting to find a more direct connection 
between nonlocal equations of motion and their balance laws, continuity 
equations, or conservation laws. It would be worthwhile, in particular, if 
one could avoid the Lagrangian altogether {B14}, thus obviating its construc- 
tion (which may be difficult or time-consuming). Furthermore, a direct 
method could also clearly display a structural interconnectedness, thereby 
giving rise to the possibility of modifying existing (or adding new) interac- 
tion terms to the equations of  motion and immediately seeing the consequen- 
ces for the associated balance laws, continuity equations, or conservation 
laws. This may be of special value for linear approximations to nonlinear 
equations of  motion (such as the Boltzmann equation). 

Although such a connection has been made for some instances of the 
local case pertaining to, for example, linear second-order differential 
equations (referred to here as LSDEs) (Lurie et al., 1966; Greider, 1984), 
the wider nonlocal case of  linear second-order integrodifferential equations 
(referred to here as LSIDEs) does not appear to have been treated. 

The main results of  this paper appear as theorems showing how to 
write down nonlocal balance laws, and give conditions under which nonlocal 
continuity equations and nonlocal conservation laws obtain, by consider- 
ing the LSIDEs (or adjoint LSIDEs) alone (i.e., without having to 
explicitly introduce a Lagrangian {B15}). Details can be found in Gould 
(1982) {B16}. 

The paper is organized as follows: 
Section 2 describes the general way in which the "main results" were 

obtained. 
The main results are then found in Section 3. These appear as three 

theorems showing how to directly relate nonlocal systems of  equations of 
motion to corresponding nonlocal balance laws, continuity equations, or 
conservation laws. 

Two applications of  the formalism are given in Section 4. One is for 
a nonlocal SchrSdinger equation. The other is for a system of local relativistic 
equations describing particles of arbitrary integral spin. 

Section 5 discusses the main results, including comments concerning 
the physical significance of energy-momentum complexes for LSIDE sys- 
tems. It also describes the importance of boundary conditions. 

Appendix A sketches how nonlocal equations of motion, the energy- 
momentum complex, and balance laws arise out of the nonlocal calculus 
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of variations. This is done to give the reader some idea of the "scaffolding" 
that went into constructing the paper's main results. 

Finally, Appendix B elucidates certain remarks made in the text. 

2. SKETCH OF THE MAIN RESULTS 

The formalism of this paper is based on the observation that by utilizing 
the variational calculus it is possible to imbed certain classes of 
integrodifferential equations in a variational formulation through the use 
of  a suitable Lagrangian (or Lagrangian density, in general) ~. This is true, 
in particular, if the class considered is any system of linear second-order 
integrodifferential equations (LSIDEs) having an appropriate continuity 
structure. 

It is then possible to utilize a nonlocal extension of Noether's theorem 
(Edelen, 1971a-d) to arrive at the general formulation of the nonlocal 
energy-momentum complex (a quantity sometimes related to the energy- 
momentum density), W~ or 0~ ' ,  each of which depends on Af. 

One can again refer to the Noether theorem in order to arrive at a 
formula which expresses nonlocal balance laws as a function of ~.  The 
balance laws go over to nonlocal continuity equations if there are no sources 
(or "sinks") present. And the continuity equations can, in turn, become 
nonlocal conservation laws (e.g., when the fields vanish over the boundary).  
(See the Remarks following Theorem III for further discussion.) 

However, the reader should be aware of the fact that no Lagrangian 
needs to be calculated in order to apply the formalism of this paper even 
though a Lagrangian was used to obtain the paper's main results (as 
explained in {B15}). The reason for this is that one is only interested in 
obtaining balance laws, continuity equations, or conservation laws for 
systems whose dependent (or "state") variables satisfy Euler's equations 
(viz., the LSIDEs "equations of motion");  and, as can be seen, the LSIDEs 
as well as other quantities in the paper's main results (Theorems I-III)  do 
not contain any Lagrangian. 

The connections established between the LSIDEs, LSDEs, and those 
other quantities may be schematized as follows: 

LSIDEs 
~using the formula for the nonlocal 

Nonlocal balance laws 
l~ur LSIDEs 
Nonlocal continuity equations 
ITur LSIDEs 
Nonlocal conservation laws 

*LSDEs ~, . 
I using the formula for the 

I I Wk or 0 ~ 
V l  
Local balance laws 
l tur LSDEs 

I . . . 

Local contmmty equations 

l ~ur LSDEs 
I 

Local conservation laws 

local 

where ---> means "weakly leading to," ur means "leads to under certain 
restrictions on," and W~' or |  are energy-momentum-complex functions. 
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3. CONNECTION BETWEEN NONLOCAL EQUATIONS OF 
MOTION,  THE ENERGY-MOMENTUM COMPLEX, A N D  

BALANCE LAWS 

As a result of introducing a certain general Lagrangian ~ into the 
Euler equations, one arrives at a general expression for both the LSIDEs 
and their adjoint LSIDEs. Then, introducing ~ into the general expression 
for the momentum-energy complex (obtained from a nonlocal generalization 
of Noether's theorem), one also arrives at the form of what will be called 
a "canonical energy-momentum complex" corresponding to the LSIDEs. 
(These procedures are indicated in Appendix A.) 

The first of the main results is then obtained explicitly as follows. 

Theorem L Given any system of LSIDEs 

a ~ A O t O r C ~ A + a ~ A O r C ~ A + a E a t ~ A - k  - f K~A(X, Z)tbA(Z) dV(z) 
r i D *  

+ f  HqA(X, • ) 0 q 6 A ( z )  dV(z)=f~ (3.1) 
d D* 

describing a physical system, where t, r go from 1 to n= the  number of 
independent variables, each capital Greek letter is to stand for o" indices, 
{~b A} is an N-tuple with N being the number of  dependent variables, and 
the adjoint system of LSIDEs with N-tuple {~b r} is given by 

OqO,(aqt~r)--O,(atr~r)+ar~r+ fD * Kr~(z, x)~Or(z) dV(z) 

_ f  q,r(z ) oHb~(z, x) d V ( z ) = - g ~  (3.2) 
D *  O X t  

Then a canonical energy-momentum complex corresponding to equations 
(3.1) is 

Wk = e W~' ~- NL ulr" m -- "" k (3.3) 

where k,  m = 1 , . . . ,  n; the local part of W~ is 

m 1 m qrn  F A 1 rn qrn  A F LWk := --~[arA--(Oqara)]~b OkO +~[arA ,(OqarA)]ga Okr 

+ a~.~(o~OA)(oJ" ) + a~."~(O,q,~')(o~6 ~) 
m F A 1 q 1 q r  I" A - 6k {fv~ --gAcb --[arA--~(OqarA)+~(OqO~arA)]~ 0 

1 r q r  A r 1 r q r  F A - :[ar~- (a~ar~)](a~4,)4' + : [ a ~  - (a.a~)](o~g,),~ 

+ a~.~A(Oq~r)(O~4)A)} (3.3a) 
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and the nonIocal part of  W~' is 

NLw~' := -- [okCA(x)]k~(x; ~O r) + 8"d{r t) r) 

+[Oqcha(x)]kqa(X; tpr)+oV(x)klr(X; r (3.3b) 

wherein 

k2A(X; Or):= ~ KvA(Z, x)Or(z) dV(z) (3.4a) 
3 D* 

k,r(x;  4, A) := fD* [KrA(X, Z)OA(Z) + HqA(X, Z)Oqq)A(Z)] dV(z) (3.4b) 

UA(X; 6r ) :  = ~ H~-A(x, z )6 r (z )  dV(z) (3.4c) 
d D* 

Remarks. 
1. D* is a compact  set in n-dimensional number  space of the n 

independent variables x k or z k (designated collectively as x or z, respec- 
tively). A volume element of  D* at x is designated dV(x). 

2. The {th A} and {~0 r} are each an N-tuple  of  dependent  variables and 
adjoint dependent  variables, respectively. These N-tuples may then be 
combined and written as a (direct product) 2N-tuple  {~0 ~} := {~b A, tpr}, where 
q~ and its partials O i~ :  = Oq~(x)/Ox ~ are continuous functions of  the x k 
(except when they are shown to depend on the z k) and defined over a 
Banach space designated ~ I ( D * ;  2N).  

3. Terms like az~a,tr aEh,t  a~a, f~, and gz are each functions of  the x k. 
4. The usual summation convention (implied sum over repeated 

indices) holds throughout unless indicated otherwise. 
5. I t  is important to realize that the LSIDEs (and other equations in 

this paper) are not necessarily covariant even though the notation suggests 
otherwise. The reason for this notation is to facilitate applications to rela- 
tivity. 

6. As an application of the index notation, if ~r = s for a spin-s field, 
then one may have ~b A as a tensor of rank ~r. So if n = 4 for space-time, 
then N = 4 s (however, symmetry conditions on the dependent  variables can 
reduce the value of N) .  

7. It should be noted that no symmetry is assumed for such terms as 
t r  the a~a, in contrast to the case where there are no Greek indices--i.e.,  for 

just one dependent  variable (or for application to self-adjoint equations to 
which the above reduces in certain cases) where atr  = a r'. The general form 
given by equations (3.1) will be relevant for (Maxwell 's  and) higher-spin 
equations, as will be shown at the end of the Applications section. 

Thus, Theorem I yields a direct method of relating a system of nonlocal 
equations of motion to a corresponding energy-momentum complex. For 
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example, if one can relate quantities in the adjoint LSIDEs to those in the 
original LSIDEs (as is possible in a number of cases), then the W~ may 
be directly written using equation (3.3) in terms of the original dependent 
variables {4~A}. Also, one could modify terms within the context of the 
original LSIDEs ("equations of motion") to consider different interactions 
and see the effect on the energy-momentum complex or vice versa. 

Of course, how easy it is to get the W~' in terms of the {q5 A} depends 
on the complexity of the LSIDEs. But even the adjoint functions {g,v} may 
have physical significance (as explained in Section 5). 

3.1. A Symmetry-Oriented Energy-Momentum Complex 

If one raises indices (assuming a nonsingular metric) in equation (3.3) 
to obtain W ~ ,  as usual for the local cases in field theory, the resultant 
expression (as well, of course, as the former expression) is generally not 
symmetric in a and /3. To obtain a quantity O "~ which is symmetric in 
many cases it will be necessary to modify the expression (3.3), a virtue of 
symmetric expressions being that they manifestly imply conservation of 
"angular momentum" (as, e.g., the symmetric energy-momentum density 
tensor in electromagnetic theory) {B17}. 

The goal of symmetrization is aided by generalizing the procedure used 
for local equations of motion (Soper, 1976, Section 9.4) as indicated in 
Section 3 of Appendix A. Thus one gets, using Theorem I, the following 
result. 

T h e o r e m  I L  Given any LSIDE system [equation (3.1)] along with its 
adjoint system [equation (3.2)] and canonical energy-momentum complex 
[equation (3.3)], then an associated s y m m e t r y - o r i e n t e d  energy-momentum 
complex is 

O '~  = 7IV '~  - O~G ~ '~  (3.5) 

where 

~176 := �89 ~~ (3.5a) 

with W ~13 obtained from equation (3.3), while 

G ~ := �89 ~ + S ~ - S ~t~) (3.5b) 

The quantities making up G ~~ are found from 

S ~ / 3  = L S ~ / 3  + N L s ~ / 3  (3.6) 

where the local part is 
L /x . I f 1 I" g q,~ A 1 /x q/x A 

Sc~/3 "--  ~ t  - - ~ l _ a I ' A  - -  ( 0 q a A r ) ] ~  t q-  2 [ a i ~ A  - -  (Oqara)]~b 
tzr A ~ F + a ~ . ( O ~ A ) + a A r ( G ~ 5  )}[M~]o(q5 +~n)  (3.6a) 
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and the nonlocal part is 

NL~,/z~,ael3 .--" -~{k~-(x; ~0r)}[/~7/~t~]r(ha + #ja) (3.6b) 

(with f~ running over the N components of ~b a and of 0 a) such that, for 
o - = s + l ,  

" ~,~,,~ ~ ~ . + ( M o ~ ) ~ 2  ~ . ~ + . . .  

+~A,f ~ , o ~ , ~  . . . .  3~_, (3.7) 

where 

( M ~ )  c ~ = - 3;~ 7/t3 ~ + 3~ r/~ c (3.7a) 

are the components of one of the six infinitesimal generating matrices 
M ~  ( = -Mr3,,) of Lorentz transformations, and r/,~ is the Minkowski metric. 

Remarks. 
1. A proof of equation (3.7) is given in Appendix C of Gould (1982). 
2. Antisymmetry: M~r =-Mt3~ leads to S ~ t 3 - - S ~  and thus G ~ "  

- G  ~"t3 [as explained following equation (A4.2) of Appendix A]. 
As for the previous theorem, one can directly relate an LSIDE system 

(the equations of motion) to a corresponding energy-momentum complex 
via Theorem II. (The usefulness of this theorem for a local system of 
equations of motion will be given in the second example of the Applications 
section.) 

3.2. Nonlocal Balance Laws for LSIDE Systems 

Using the preceding results, it is now possible to establish a direct 
connection between LSIDE systems and nonlocal balance laws (along with 
nonlocal conservation laws). This is indicated by Section A4 of Appendix 
A, which gives rise to the following result. 

Theorem III. Given any LSIDE system (3.1) describing a physical 
system along with the adjoint LSIDE system (3.2), then an associated 
nonlocal balance law is 

O,. W'~ = - [akfr(x)] 6 r +  [Okgr(x)]hr(x) 

+(Ok{arA(X)--�89 l[aqOra~'~A(X)]})q'r(x)ha(x) 

+ �89 a~'a(X) -aoaq~A(X) ]}[arh A(x) ]or(x)  

- �89 -- oqaq~a(x)]}[O~Or(x)] 05 A(X) 

-- [akaq~(x)][aqq~r(x)]a~d)A(x) 

+ ha(x  ) ak2a(x; O v) ~_ Or(x ) ak, r(X; h A) 
Ox k Ox k 

+aqrba(x) akq(x; 0r) (3.8) 
Ox k 
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with the W~ given by equations (3.3). In addition there results the nonlocal 
balance law 

0t3@ ~ = 0t~~ ~ (3.9) 

with O '~r given by equation (3.5) and 7g ""t~ related to the W~' via definition 
(3.5a)i If  the rhs of equation (3.8) or (3.9) is zero, there result nonlocal 
continuity equations. And if, further, the time derivatives OoW~ = 0  or 
0oO 4~ 0, then nonlocal conservation laws result. 

Remarks. 
1. The following terminology is introduced to expand upon the last 

two sentences: If OmW'~ (or 0t30 ~t3) is given by equation (3.8) [or equation 
(3.9)] in a particular reference frame with the rhs nonzero, then the equations 
will be referred to as the point form of nonlocal (local) balance laws if they 
contain (do not contain) integrals. If the rhs of  equation (3.8) [or equation 
(3.9)] is zero in a particular reference frame, then the equations will be 
referred a s t h e  point form of nonlocal (local) continuity equations if  they 
contain (do not contain) integrals. Finally, if in a particular reference frame 

O=O,,W'~'=OoW ~ (for m # 0 )  (3.10) 

o r  

0=0~O ~t3 =000 ~~ (for/3 # 0 )  (3.11) 

the equations will be referred to as the point form of  nonlocal (local) 
conservation laws if they contain (do not contain) integrals; the subscript 
0 is used instead of, say, the m = 1 or /3  = 1 coordinate, so that 00 stands 
for the derivative with respect to time. 

2. Although the energy-momentum (or symmetry-oriented energy- 
momentum) complex can sometimes be directly associated with energy or 
momentum for particle dynamics, in field theory it is usually necessary to 
integrate those quantities over some region (say, 3-dimensional space) in 
order to obtain energy or momentum. Consequently, the integrated 
equations (3.8) [or (3.9)] will be referred to as global balance laws. In case 
the integrated equations result in the integral of 0o W ~ or 000 ̀ '0 vanishing 
over some spatial hypervolume there will result global conservation laws. 
One may have, in particular, the interesting case of global conservation 
laws obtaining from nonlocal balance laws, the conservation laws being 
valid only for the system as a whole. 

3. The nonlocal energy-momentum complex W~' arises out of applying 
a one-parameter family of  coordinate transformations (of class C u in the 
independent variables x k) and function variations to the nonlocal action 
(see Chapter 4 of NV). This is a starting point for obtaining Noether 's 
theorem. However, a special case of that theorem results when one obtains 



344 Gould 

the derivatives of  the energy-momentum complex for those systems where 
0,, W~' = 0, a conservation law being obtained when the partial derivative 
(with respect to time) of  the W~ is zero, while the more general situation 
which gives rise to balance laws is obtained when the rhs of the previous 
equation (instead of being zero) is equal to terms depending on the 
Lagrangian under conditions where the Euler equations are satisfied [cf. 
equation (2.136) from Theorem 2.11 of NV and equation (3.8) above]. The 
rhs is then associated with "source quantities," while the W~ may be 
referred to as components of the "flux vector." These results (i.e., balance 
laws stemming from Noether's theorem) should not be confused with 
"transversality conditions" (pertaining to restrictions that coordinate and 
function variations have on the boundary of D*) even though both results 
involve the W~ {B18}. 

Thus, Theorem III (along with Theorems I and II) enables one to relate 
nonlocal systems of  equations of  motion (LSIDE systems) directly to corre- 
sponding nonlocal balance laws, continuity equations, or conservation laws. 

There are different ways of applying the formalism. For example, as 
will be shown in a local case of  the Applications section, in order to try to 
obtain the W~' or | in terms of the 4) A alone (rather than with the adjoint 
functions in addition) the procedure will be to identify quantities in the 
adjoint LSIDE system with those in the original LSIDE system (the 
"equations of motion").  Whenever such a procedure is carried out, it will 
be referred to a establishing compatability conditions between the LSIDE 
systems. 

4. APPLICATIONS 

In this section two examples are given to show precisely how the 
formalism can be applied. The first example comes from nonlocal nonrela- 
tivistic quantum mechanics and the second example comes from local 
relativistic quantum field theory. 

4.1. A Nonlocal  Case 

An example of a nonlocal "equation of motion" frequently used in 
contemporary physics is the nonlocal Schr~dinger equation [{B19}, {B20}] 

(-h2/2M)V2fb-ih04c~+ I U(x,z)ch(z)dV(z)=O (4.1) 
D* 

where, in general, D* stands for the 4-dimensional region with x--- 
(x ~, x 2, x 3, x 4) or z ~ (z 1, z 2, z 3, z4), U(x, z) is a nonlocal potential because 
of  the z dependence, 04 is the partial derivative with respect to the time 
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coordinate x 4, ~b is the wave function, i = ~C--f, h = Planck's constant/2~', 
and M is the particle's mass. Starting with this equation, application of the 
formalism is fairly easy. 

Begin with Theorem I (but for no Greek indices). The basic equation 
(3.1) is 

a'~O'Gq~ + arGq~ + aq~ + Io* K (x, z)(a(z) dV(z) 

+ f  Hq(x, z)OqO(z) dV(z)=f (4.2) 
d D* 

Comparing Eqs. (4.1) and (4.2) gives 

a'r=-h2/2M ( t = r = l , 2 , 3 ) ,  a'r=-O (t~r), a44=-0, f~-O 

al=a2=a3=-O, a4=-ih, a=-O, (4.3) 

K(x,z)=U(x,z), Hq(x,z)~O 

The basic adjoint equation (3.2) is 

aqtOqCg'O-atOt~ + aql + ID* K (z,x)O(z) dV(z) 

f oil'(z, x) 
- D* Ox' tp(z) dV(z)=-g (4.4) 

which, with equations (4.3), gives 

(-h2/2M)V2~l, + ihO4~b + f U(z, x)q,(z) dV(z) = - g  (4.5) 
d D* 

Now taking the complex conjugate of equation (4.5) gives 

(-h2/2M)V2tff-ihOnt~+ I (J(z,x)Lb(z) dV(z)=-g (4.6) 
D* 

where the overbar on a quantity means complex conjugate. A "compatibil- 
ity" of equations (4.1) and (4.6) holds for 

t "  t "  | 
d D *  ,,'1 D *  

The second equation of (4.7) is satisfied for 

O(z, x) = C(x, z) 

g--=0 

(4.7) 

(4.8) 
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which is the requirement that the Hamiltonian 

H : =  ( -  h 2/2M )V2 r + f o * U(x, z)qb(z) dV(z) (4.9) 

be Hermitian {B21}. 
Finishing the application of  Theorem I to equation (4.1) is quite simple: 

Using equations (4.3) and (4.7), equations (3.4a)-(3.4c) become 

kz(x; 4~) : f U(z, x)r dV(z) (4.10) 
3 D* 

k,(x; r = fD* U(X, z)r dV(z) (4.11) 

kr(x; r =- 0 (4.12) 

4.1.1. Computing the W'~ 

When equations (4.3), (4.7), and (4.10)-(4.12) are put into equation 
(3.3) (again remembering there are no Greek indices) there immediately 
results 

W ~  : amq(aq~ )(Ok~) ~- a qm (Oq~)(Ok~) ) --l  a m~Okr ~ ~-l am~)Ok~ 

"4- ~ n { l a 4 ( 0 4 ~ b ) ~  - 1 a 4 ( 0 4 ~ )  ~b - aqr(Oq~)(Or~)) 

+ r dp)+ dp(x)k,(x; 6)} (4.13) 

for the energy-momentum complex. 
Explicit calculation of  the W~' is obtained using equation (4.13) along 

with (4.3) and (4.10)-(4.12): 

W44 = (h2/2M)(Vr �9 ( V q ~ ) + r  U(z, x)r dV(z) 
.I  D* 

+d~(x ) f  U(x, z) r  dV(z) (4.14) 
J D  

for the nonlocal energy density {B22}. 
Using the more suggestive vector notation we can write W 4 (k = 1, 2, 3) 

a s  

--W 4 = �89162 +�89162 -- ,~[q~(-ihV)r = ~ [ & P r  (4.15) 

where W 4 : = ( W  4, W 4, W4), ,~t means the real part, and P:=-ihV is 
the momentum operator. Thus, W 4 essentially represents the momentum- 
density components of  the field (the same expression as for the usual local 
SchrSdinger equation). 
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For k = m = 1, 2, 3 one has (no sum on m) 

W,~ = (-h2/M)lOm&12-�89 - (}~04(~)71- W44 (4.16) 

where lam~b[2: = (am&)(Om~) and W 4 is given by equation (4.14). 
For k = 4  and m = 1, 2, 3 there results 

W4 = ( -  h2/M)gt[(V 4~)(a44;)] (4.17) 

where W4 :-- ( W4 l, W 2, W~). 
For k # m = 1, 2, 3 there results 

W~ = (-h2/M)9~[(Omdp)(ag~)] for k = 1, 2, 3 (4.18) 

All 16 components of  W~ can be symbolized: 

(W4, W44) and (Wg, W~) for k - - 1 , 2 , 3  (4.19) 

where Wq := ( W~, WRq, W3q) for q = 1, 2, 3, 4. Thus, regarding the { W~'} of 
expression (4.19) as making up a 4 x 4 matrix, the nonlocal terms only occur 
along the main diagonal. The off-diagonal elements give the same 
expressions as for the local Schr6dinger equation. To use a continuum 
mechanics analogy: it is as if "normal stresses" were due to the nonlocality 
but "shears" were not. (For the local Schr6dinger equation the diagonal 
terms, in addition, are the usual ones.) 

4.1.2. Nonlocal Balance Laws for Energy and Momentum Densities 

When equations (4.3), (4.7), and (4.10)-(4.12) are substituted into 
equations (3.8) of Theorem III (with no Greek indices) there results 

OmW'k"= 2~ ( d~(x) 0k2(X;0x k 4~)) (4.20) 

Then, using equations (4.19), these equations can be separated into two 
groups. 

The first is 

[V. Wk+o4W4]e k = 2!)t[O(X) Vk2(x; ~)]  (4.21) 

where e k is a unit vector along the x k axis and k = 1, 2, 3. These equations 
represent the nonlocal balance law for momentum density. 

The second group is 

V ~ W4-~- 04 W 4 = 2,~l [ ~b (x) 0 4 k 2 ( x "  ~ (~)] (4.22) 

and represents the nonlocal balance law for energy density. 
One sees from equation (4.10) that the x-dependence is contained only 

in U(z, x), the "kernel" of  k2(x, ~b). Therefore, if any component of the 
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gradient operator  V := e~01 + e202 q- e303 gives zero when operating on U(z, x), 
then equation (4.21) gives a nonlocal continuity equation for that component  
of  the momentum density. 

IfOU(z, x)/Ox 4= O, then the rhs of equation (4.22) is zero and one has 
a nonlocal continuity equation for the energy density. If, further, V �9 W4 = 0, 
then (retaining x 4 instead of  x ~ for the time coordinate) one has 

0 4 W 4 = 0 (4.23) 

a nonlocal conservation law for the energy density. By integrating equation 
(4.23) over some spatial subset d* of D*, there results 

fd* (04W4) dx~ dx2 dx3=d(fd* W4 dx ' dx2 dx3) /dx4=O (4.23a) 

[Less stringently, one may have integrated V �9 W4 over the 3-space, applied 
Gauss '  theorem to d* (or to D*), and then found the integral of  04W 4 over 
d* (or D*) to have vanished.] This says that the energy within d* remains 
constant over time. Notice that the energy within d* is not determined only 
by what exists within that region, but also on what exists outside it (and 
within D*),  as can be seen from equation (4.14). This "global"  aspect is 
an expected characteristic of  starting with nonlocal equations of  motion. It 
is not an expected situation(!) for local equations of  motion [e.g., the usual 
Schr6dinger equation has W 4 = (h2/2M)(Vq5) �9 (Vq~)+ U(x)dp(x)q~(x)]. 

As an interesting comparison,  let us see what the balance laws are for 
the local Schr6dinger equation. Theorem I easily yields the W~' symbolized 
by equations (4.19) for the local case. Theorem I I I  (even more easily) yields 
that instead of  equation (4.21) one has 

[V" W k -I- 04 W4k]e k = - F p  (4.24) 

and instead of equations (4.22) there results 

V" W4-~ 04 W4 = (04U)p (4.25) 

where F = - V  U is the local force and p = 4~q~ is the local probabili ty density 
(Havas, 1978 {B23}). 

4.2. A Local  Case 

In order to describe the dynamics of  massive particles of  integral spin 
s in the presence of sources one may consider the fundamental  equations 
of  motion 

O o ~ t r ( q + l )  
I"J [otJ~][~tl~2][~3ld4]"'[#2tl-l~2u]~2q+l ""~.s+q I -}- "" A 2  

I T(q) 
L"/3 [ ~t ~:2 ] [  ~3,~4]'"' [,%,j ~2,]~2,~+t'"G+q-t 

- 1(q) (4.26) - -  "J l~[ g~l ~2][ ~3~4J'"[ ~2q-1~2q]dJ2q+ l "'"~s+q I 

where the U:.. represent real potentials, while X 2 and J:.., respectively, 
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essentially stand for the particle mass and source density {B24} ([~'r] means 
UL. is ant isymmetr ic  in ~" and r.) 

Using the definition 
( q + l )  

Ut,~3t~,~=3...ee~.,,-,e2,,3e ..... ..e~+,,-, := 0=U~3]~,~2~...~e .... <,3e ..... .-.~,+,,-, 

- 0  U (q) (4.27) [3 OZ[~l~2]"'[~2q--1~2q]~2q+l'' '~+q 1 

along with the Minkowski  metric ~/~ and its contravariant  counterpar t  (so, 
e.g., 0 ~ = t l ~ ' G ) ,  one can write the system of  equat ions (4.26) for t := s + q - 1 
a s  

o~o- " ' ~  19 0 U ( q ) u [ e l e 2 ] ' ' ' e t  

- -  T] c~rr T/c~,, '/7 ~, e, T~ ~:2e2" " " '~ ,fte Oo-O[3 U (q) v[el  e 2 ]  e 

"b 2 --  T(q) (4.28) X r / [3/ r /~:  ~, r / ~ 2 ~ 2 " "  r / ~ , <  U ( q ) ~ [ q ~ 2 ] ' g  - -  " [3 [~ ,~ :2 ]~ ,  

our  starting equat ions o f  mot ion.  
For  the L S I D E  system (3.1) containing only local terms one has the 

L S D E  system 
o'er .,3 ..q . 4 ~ ( q ) ~ ' e t e 2 " " E i  "'" a [3v&e,f2e2...f,e,u, aOo-W q- a ~ve, e,fae2...f,e,O a~) ( q)~'e'e2 e, 

+ a - ~ q > g ~ 2 g  - r  (4.29) [3V~l el ~2e2"" ~let ~t~" - -  d [3~l ~2"" ~t 

Compar ing  equat ions (4.28) and (4.29), using 

"q~176 2. ~#,eOcrO[3 U(q)v[ele2] G 

= ( ~ ( ~ l ~ r 1 6 2  ( q ) " [ e l ~ 2 1 ' ' ' e '  

and realizing that  the U (q>~g~'-3g may be ordered in some way (e.g., 
g ( q ) O [ 0 0 ] ' ' 0 ,  g ( q ) l [ 0 0 ] ' ' ' 0 , . .  . ,  etc.), one can make the identifications 

a a 

= X  2 a/3v~:, q ~:2e2...Ge ̀  ~ /3  v T] ~-, e, T] e2e2""" T/Ge, (4.30) 
[ ~ ( q ) P 6 1 ~ ' 2 " " e ,  : u ( q ) ~ ' [ ~ : l ~ ' 2  ] ' ' ' e ,  

f (q) = J (q)  [3&e2""~, /3 [ ~ 2 ] . - . ~ : ,  

The adjoint  equat ions for  the L S I D E  system will then contain only local 
terms and are obta ined f rom equat ion (3.2) as 

o~cr ..q ..3 , I , (q)~el~2""~t  ot ~ - - ( q ) l ~ l ~ 2 " " e  
a v[3~,e,~22~2..._Ge,U~Uoak, - -  a v[3f, e,/5=e2.../L~,dcr )" ' 

-1 t - ~  "l'(q)ue'e2""G = -" (q)  (4.31) 

Compat ibi l i ty  o f  equat ions (4.29) and (4.31) can then be obta ined using 

o(q>~ '~=g = q5 ( ~  (4.32) 

- -  " ( q )  - -  t r ' ( q )  (4.33) 

with a ~ -[3e,~,e~---e,~,-= 0, thereby requiring 

a ~ = a ~'~ (4.34) I~ j~ l  81 ~2e2" " "~tgt [3V~:I e l  ~282" " "~te t 
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Since one is only dealing with a local set of equations, then NLw~' ~--0 
in equation (3.3b). So, putting m ~/z,  k ~ K, q ~ p (and q ~ ~', r ~ p within 
{.}) in equation (3.3a) and employing equations (4.30), (4.32), and (4.33) 
along with definition (3.5a) yields 

/xp  h 1" bt 1" 1 1" A ~ 2  = a,.a(Op& )(0K05 )-6K{fi-05 --SarA~ ~ +�89162 (4.35) 

where use has been made of 

af#A(Opol')(OK~ A) = a~ '') = a~.~ r ) (4.35a) 

The expressions on the rhs of (4.35) can now be obtained in terms of 
expressions from our starting equations. 

From equation (4.30), with ce -~ ~', ~ ~ p,/3 ~ 3', and u-~ A, there results 
�89 = t i t ( q + 1 )  U (q+l)[~'y]fsele2]'''et (4.35b) 

4 I"J [ ~'~ ] [ #1 ~:2 ]" " " ~/ 

using definition (4.27). From equations (4.30), with/3 - 3' and v - A, one gets 

-�89 A = --21-X2 U (q)3'['~1~:2]''''~' U (q) (4.35c) 

Finally, using equations (4.32) and (4.34) along with appropriate change 
of indices, it can be shown that 

p/x 1" A a,O z u(q)A[ele2]"'e,z u ( q ) T [ ~ I ~ : 2 ]  " ' ' ~ `  (4.35d) arA(OpO )(0~(h )=  .y~lEl~2~2...~16lUp O g 

To obtain the energy-momentum complex, put equation (4.35d) in (4.35a) 
and this result along with equations (4.35b) and (4.35c) into (4.35) to give, 
using (4.30) (with a ~ tz, ~ ~ p,/3 ~ % and i, ~ A ) 

c ~  = ,l~lzp,~ TA ~ ~lel,17 ~2e2. . . ,rl ~,etOpU(q)A[Ele2]...~tOKu(q)'y[gJl~2]...~, 

- -  ~ / '~  6 P A  y ' J~  ~:1 e t  ~ ~2e2"  "'~l~,e, Op o(q)A[ldIe2]cta~:O (q)'y[~l~2]'''~' 

i . ~ P ' f / ( q )  I / ( q ) / 3 [ # l ~ 2 ] " ~ : t  

I 1 I r ( q  + 1 )  s ( q + l ) [ ; ' v ] [ # l ~ 2 ] " ' # ,  t-~ [~'-/][4q ~2]--.~: , 

_�89 e2?'"e, u (q )  1 (4.36) 

As 7//"~" = ~ TM, then equation (4.36) becomes 

~ ' r ~  = u(q+ l )[~A l[ele2]...e,o.r u(Aq[)lez]...e ' -- ~l~'r~ J l(q)t" /3 [r L.,/" r(q)13 [~#~]"'#, 

q - 1  u ~ q ; l / ~ : i  ~ :2 ] . . .~  ' u ( q +  1 ' [ ~  ~ 2 ] ' " ~ : ,  

1 2 / -  f ( q )  I r ( q ) X [ ~ : ~ : ~ ] " ' ~ : , l  (4.37) 
- - ~ X  t - '  x [~ ,~c2] . - .~ : ,  ~ J 

using equation (4.27). 
Since Nes~---0,  then putting equation (3.6a) in (3.6) gives 

/x __ 1 r ~  A /x r  A ~ F O. 
So~- -~{aA l ' (Or4  ) + a V A ( O r ~  )}[M,~]a24 

p . r  F ~ I" f~ 
= a~A(O~6 ) [ M j . 6  
= a.O z u(q)A[el~2]et[lW 1 ] t ~  u ( q ) ~  u2]"t  

60~1,61E 1//,2 ~:2" " ' / z  t 8t ~Y.o L Or J O'~'1 " " " P t 

/ / ( q + l ) [ / z  [ ~'1 ~'2]" " ' ~'t T T ( q )  
= - -  u '  ' ~ l  t-" ~ [ ~ , , ~ ] . . . ~ ,  

q_  t r ( q + l ) D z  [~ , l~ ,2 ] . - -U,  T T ( q )  . . ] . . ] ~ / x  t (4.38) 
L. ,  ,/~] Ld ~ [ ~.'1 ~'2] �9 - - .u , 1 _ o ~ / 3 J  
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where the second step follows using (4.34) and the third follows from (4.30), 
(4.32), and (4.34) along with y~s~2... ~,-+oJ/xdx2.../,,. The last step in 
equation (4.38) comes about as follows: Put the expression (3.7a) into (3.7) 
and then multiply by U (q)~E~,~3% The first term from the rhs of (3.7) will, 
with (3.7a), give the relevant ones for the first two terms on the rhs of (4.38); 
the remaining terms are lumped into {s~r 

Now raising indices in equation (4.38) gives 
SO~/x ir(q+l)[~.o~][zq~,2]".v, rT(q)~  -~- - -  tJ ta [vtr.,z]...v~ 

+ ~ r(q+')b*13][~'~]'"~' rr(q)'~ + { S ~ e  } ( 4 . 3 8 a )  ~.a ~--'[ v~ v2] . . ,  v, 

Then, using (3.5b) gives 
GO~talx__ l"T(q+l)[,Slx][vlvz]"'%lT(q)o~ ..]_1.fr 

- - t a  t.J [ ~ . 2 ]  ..... 2 t8  J (4.38b) 

where 

and thus 

gC~/3~ := S[31za + Sa#13 _ S a ~  : _ g  alzl3 

O~O . g  ~ =- 0 (4.38c) 

a fact which will be used later. 
The symmetry-oriented energy-momentum complex can now be 

obtained by putting equations (4.37) and (4.38b) into (3.5) to get 

0 ~  = u(q+,>E~E~,~I...~,O ~ U(~> I ..... 

- -  ~ 7 a / 3 { . . . } - - ~ -  u ( q + l ) [ / ~ f l ] [ ~ ' l v 2 ] " ' v t ~  u ( q ) c t  
ulx [vlv2].. .v ~ 

+ 0,o. t..,l r(q+l)[la-~]tvl v2]""  v ta i l  [(q) ~ v2]""  v, - -  �89 ~~ } (4.39) 

where { �9 �9 �9 } comes from equation (4.37). Then the sum of the first and 
fourth terms is evaluated using definition (4.27) along with the antisymmetry 
of U (q+l)E~ And the third term is evaluated after multiplying (4.26) by 
U (q) .  When this is done equation (4.39) becomes 

0 ~t~ = 0 ~ - t - J  (q)13[~,~2]'''% U (q)'~ 
[ 91 P2]""  9 I 

_-e ,(q) U (q)x [e't2]''r - �89 {g ~e~ } (4.40) - -  t] d A [~:1 ~2].. .~, 

where O "r is defined as 

0 a/3 :=  u ( q + l ) [  c~ a][ets2]...s, u(q+l)[13a'][eae2 ]'''e, 

, ,2lT(q)or U(q) ,8[v lv2]" 'v ,  - - a  ".."[,qv2]...v, 

a / 3 j - I  l T(q + 1 )  u(q+l)[mv]E~Jl~2]'"~t 

,..2 ~ r(q) u(q~,,te,e=l, e,~ (4.40a) - - 2A  t-~ x[~2]. . .~,  J 

and is clearly s y m m e t r i c  in ce and/3. 
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The divergence Theorem Ill  is now employed by substituting equations 
(4.30), (4.32), and (4.33) into the rhs of equation (3.8) to get (as k's ~- 0) 

0/3 Oa/~  --  T r(q)]3 [ -~' -~]'" "~"~ c~l(q) ( 4 . 4 1 )  ----- ~" - ~ '  " ] 3 [ ~ 2 ] " - ~ ,  

Also, from equation (4.40) along with (4.38c) there results, using definition 
(4.27), 

0]3 (a-) ce]3 = 0,80 '~'8 -- J(q)]3 [~l~2] '"~t  ~'r/(q+l)[]3t~][~l ~23" "'~t - u3~r(q)J ]3[~1~2]'" "~t u(q)]3E~l~-2]'"~t 

"}-"q l(q)]3[vlu~J'"vl lT(q)ce (4.42) 

From equations (4.41) and (4.42) follows 

0] 30=/3 : J ]3[~r162 ~.~l [(q+l)[]3~e][~:l~:2]'"~:, - -  c'j]3J(q)]3[ v, v2] 'v ,  u ( q  )a[v,v2]...v, (4.43) 

a local balance law with sources designated by the rhs. 
In regions where there are no sources J:=---0 and (4.43) implies that 

0130 ~]3 = 0 (4.44) 

which is a local continuity equation for the symmetric energy-momentum 
density tensor. 

For regions where sources exist one may write equation (4.43) as 

0, (0 ~ + ~ ~]3) = 0 (4.45) 

a local continuity equation for source density plus energy-momentum 
density tensor, where M~]3 is defined such that 

__ s T ( q )  u ( q +  1)[a]3 ][~:, ~2]...{: , _ O~j(q)]3[,,i v2].., v, u(q)~e 1. 03 jigs]3 := "ta]3[~r [,q~,2]-.-~,J 

Equations (4.44) and (4.45) may immediately imply local and global 
conservations laws [cf. equation (3.11) and definitions following] for the 
energy-momentum of the field and for the energy-momentum of the 
field-plus-source, respectively {B25}. 

Although equations (4.44) and (4.45) are known results, it should be 
mentioned that when they were first introduced into the literature (e.g., 
Fierz, 1939) no Lagrangian was known and the energy-momentum density 
tensors were obtained by judicious guessing. 

5. DISCUSSION 

The main result of this paper has been to establish direct relations 
between linear second-order integrodifferential equations of motion 



Nonlocal Conserved Quantities 353 

(LSIDEs) and nonlocal balance laws, continuity equations, or conservation 
laws associated with them. The formalism can be applied to classical or 
quantum physical systems whose relevant equations of motion are either 
relativistic or not. In particular it can facilitate the generation of global 
conservation laws for such quantities as energy and momentum. 

The main result has been expressed through Theorems I-III .  These 
relate the LSIDEs to nonlocal balance laws, continuity equations, or con- 
servation laws for the energy-momentum (or symmetry-oriented energy- 
momentum) complex. 

It should be noted that the formalism is applicable not only to systems 
of equations in field theory, but to a non-field-theoretic subset, such as 
those theories wherein the equations of motion have generalized coordinates 
as the dependent variables and either proper or coordinate time as the 
independent variable (e.g., in Newtonian or relativistic particle dynamics). 

Furthermore, if the equations do not contain integrals, then the formal- 
ism specializes to the usual case of systems of linear second-order differential 
equations of motion. The energy-momentum complex for this subset will 
then frequently correspond to a physical system's energy and momentum 
instead of  its energy and momentum density, respectively. 

Because the LSIDEs are imbeddable in a variational statement, it is 
possible to alter the energy-momentum complex without changing the Euler 
equations. This is done by bringing elements of the so-called "null class" 
(p. 57 of NV) into consideration. These elements (which can also be incor- 
porated in the variational statement) will then augment the Lagrangian 
chosen but thereby result in the energy-momentum complex not being 
unique (p. 90 of NV). 

However, the null class is very useful for incorporating boundary 
conditions which should arise in a statement of the physical problem or, 
as is well known, for symmetrization of the energy-momentum complex 
{B26}. As a consequence of this fact, it is possible to obtain balance laws 
and conservation laws from nonlocal equations of motion which have rather 
general boundary conditions [as has been shown by Gould (1982)]. 

In view of the unlimited number of Lagrangians possible as auxiliary 
quantities in constructing the general form of the energy-momentum com- 
plexes, it was necessary to make some decision on which Lagrangians were 
suitable. As there is no general physical criterion for choosing one 
Lagrangian over another {B27}, the quantities chosen [given by equation 
(3.3a)] were such that they resulted in the standard expressions for the 
energy-momentum complex (except, perhaps for a trivial multiplicative 
constant) for various local equations of  motion. Examples were given in 
the Applications section of this paper (for the local Schr6dinger equation 
as well as for the equations corresponding to particles with spin s). 
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Some other cases considered (but not developed here) were as follows 
(using the notation (N, n)m, where N, n and m stand for the number of 
dependent variables, number of independent variables, and number of 
equations, respectively {B28}): 

(a) Two coupled simple harmonic oscillators; a non field-theoretic- 
case of (2, 1)~ [see equations (14-1), (14-2) and (14-23), (14-24) of Becker 
(1954)]. 

(b) The Klein-Gordon equation for a charged scalar meson interacting 
with an electromagnetic field and in the presence of a source (e.g., a 
nucleon); (1, 4)1 {B29}. 

(c) The diffusion or heat equation (both being of the same form). 
These, representing dissipative processes for density or heat, are of the form 
(1, 4)1 {B30}. 

(d) The Dirac equation for a charged particle in an electromagnetic 
field; (4, 4)4 {B31}. 

(e) The sourceless Maxwell equations using three complex fields, 
SJ := Ej + i/--/j ( for j  = 1, 2, 3); (3, 4)3 {B32}. These are equivalent to the usual 
sourceless equations; (6, 4)8. [It should be noted that the spin-s equations 
(4.26) of Section 4.2 include Maxwell's equations (in the presence of sources) 
along with their usual symmetric energy-momentum density tensor and 
conservation laws {B33}.] 

In Section 3 it has been seen that associated with the given LSIDEs 
are the adjoint LSIDEs, whose dependent variables are called the adjoint 
functions (cf. Theorem I). These functions were also seen in the expression 
for the energy-momentum complex [cf. equation (3.3a)]. 

However, it is frequently possible to eliminate the adjoint functions 
from that complex by relating them to the given LSIDEs' dependent vari- 
ables through "compatibility conditions." Examples were given in the 
Applications section for the nonlocal Schr6dinger equation (where the 
adjoint function was identified as the original wave function's complex 
conjugate) and for the spin-s equations (where the adjoint functions were 
identified as the potentials U=: in the original equations of motion). 

If the adjoint functions are present in a physical system's energy- 
momentum complex, the physical significance of those functions and of 
that complex appears to be an open question. For example: In the case of 
heat diffusing through an isotropic medium the adjoint function is said to 
represent the "temperature" (of an imaginary system) which rises with time! 
[p. xix of Lewins (1965) and p.l13 of Moiseiwitsch (1966)]. Yet in nuclear- 
reactor theory one can ascribe physical meaning to an adjoint function 
(called the importance). [This corresponds to some detector distribution 
and is used to describe the probable contribution of a particle at one instant 
to the meter reading at a later instant, as described on p. 21 of Lewins (1965).] 
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The general problem of obtaining physically significant energy- 
momentum complexes, and their conserved quantities, from equations of 
motion is usually carried out within the context of the variational calculus 
[a recent discussion for local equations of motion was given by Lemos 
(1981)]. But at present all one seems capable of doing is to try and resolve 
this problem for each physical system considered. Indeed, even for the 
relatively simple case of  the "pure time component"  Wo ~ which corresponds 
to the Hamiltonian H in classical particle dynamics, one has several 
possibilities: H may or may not be constant in time and it also may or may 
not be identified as the system's total energy (Becker, 1954, p. 39). 

From a mathematical perspective, however, the adjoint functions are 
unquestionably useful. By employing them, one can obtain necessary condi- 
tions for the existence of solutions to a system of integrodifferential 
equations (p. 77 of NV). 

The general relation of LSIDEs to associated angular momentum 
complexes and their balance laws and conservation laws has been accom- 
plished and will be reported on later. But this along with the present work 
does not mean that my formalism is the "best" one. In particular, an 
immense literature exists wherein one starts by constructing a Lagrangian 
for the physical system under study by using symmetry considerations. 
Nevertheless, it is hoped that this formalism can be easily applied to a 
sufficiently large number of  physical systems where the equations of motion 
(LSIDEs in general) are known. 

APPENDIX A. HOW THE MAIN RESULTS STEM FROM THE 
NONLOCAL VARIATIONAL CALCULUS 

This section is a sketch to show how the equations of motion, energy- 
momentum complex, and balance laws arise out of the nonlocal calculus 
of variations. Further details may be found in Gould (1982) or in NV. 

A1. Obtaining the Equations of Motion 

The LSIDEs are obtained by employing the Lagrangian Lf defined as 
follows: 

~LP:=fr~r'grdgr--[arA--�89 +~(Oqa~arA)]t~l q~ r Aq5 

1 r qr  A F 1 r q r  1" A - ~ [ a r A -  (OqarA)](O,c~ )~0 +~[arA-- (OqarA)](O~O )6 

+ a~-~(Ooq, r)(o~6 A) --�89 0 r) + [OqOA(x)]kq(x; 0 r ) 

+ t)r(x)kw(x; 4~a)} (A1) 
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where 

with 

with 

with 

Gould 

k2A(X; O r) := fo* g2A[x, z, 0r(z)] dV(z) (A1.1) 

g2A[X, Z, 0r(z)] = KrA(Z, X)Or(Z) 

kit(x; ~b A) := dfm* glr[X' Z, t~A(Z), Oqq~h(Z)] dV(z) (A1.2) 

glr[x, Z, oA(2), 0q~A(z)] = KFA(X, Z)~A(Z) + H~A(X , 7,)Oq~)h(Z) 

r . [ r kA(X, 0 r) :---- gA[X, Z, ~br(z)] dV(z) (A1.3) 
J D* 

g~[x, z, 0V(z)] = H~-a(x, z)Or(z) 

The LSIDEs [equations (3.1)] and adjoint LSIDEs [equations (3.2)] 
arise from the Euler equations 

{ ~]Sq},~(x) = 0 and {~f]~}6~(x) = 0 (A1.4) 

respectively; where 

{ ~l~}q,~(x):= {elLP(kw, k2A, k])},~(x) 

ale , a ~  
+ fD* (~w(z){e[glr(Z)}o~(X)+~ZA (z){eIg*A(z)}~(X) 

with the "little" Euler-Lagrange operator defined as 

ale 
{elLP(kw, k2A, k2)},~(x):= a0X(x) Ik,,, ~2A, k;, 

O oSf 
ox'  o[a,q,~(x)] I~,,., ~2,,. ~,; (A2.1) 

Remarks. 1. Employing the notation defined in Remark 2 following 
Theorem I, one imposes the requirements that the general Lagrangian 
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2Z[x, ~(x ) ,  am~(x), ka(x; ~x)] used to specify a nonlocal functional is C 2 
in its n+2N(n+l)+ Q arguments {B34}, where a = 1 , . . . ,  Q and 

k,,(x; q~:~) := f D* ga[x, Z, q~X(Z), Omq~Z(Z)] dV(z) 

while 

g*[x, z, ,z~(z), 0~,e~(z)] := go[z, x, ~(x) ,  0m~(x)] 

(A2.2) 

2. Quantities to the right of the vertical lines, such as in equation 
(A2.1), are to be held constant when differentiating. Here 05~(z)/Oka means 
to first differentiate with respect to ka and then replace x by z everywhere 
in the result. 

A2. Obtaining the Energy-Momentum Complex 

An energy-momentum complex W ~ ( ~ )  (with k and m = 1 , . . . ,  n), 
based on a general Lagrangian [Edelen (1971a-d)] ~ (and related to 
nonlocal balance laws) can be obtained from Theorem 2.11 of NV applied 
to a 2N-tuple of dependent variables ~ .  This complex is defined as the 
n 2 quantities 

W~"(~e).- a ~  m a ~  
(Z) -+- W2A k 3k2----~A (2") 

r.~ O~ ] 
+ WAk -~A (Z) dV(z)-  6 r ~  (A3) 

where the n2Q quantities wa% (a = 1 , . . . ,  Q) are defined as 

Og* ,, . 
m . __t~kg a Wak.= a[am ~(X)] ak,p~(x) 

for a =2A, IF, or ~ and with ga:=g,,[x,z, q~X(z), O,,~m(z)] and ka := 
ka(x; ~ )  [following the notation of equation (A2.2)]. 

Substituting the Lagrangian of (A1) into the energy-momentum com- 
plex (A3) yields the specific complex of equations (3.3). 

A3. The Symmetry-Oriented Energy-Momentum Complex 

Using a general Lagrangian ~ (mentioned above), the "symmetry- 
oriented" energy-momentum complex will be defined as 

|  (LZ) := o/g.~ ( ~ )  _ a.G,~m, ( ~ )  (A4) 
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where 

with W~t3(Sf) obtained from equation (A3). 
The quantities making up G~t3~(~) are defined as 

G~t3"(LP) := �89 (~)  + S ~ ' ( ~ )  - S ~ " ( ~ ) ]  (A4.1) 

where 

1 o~ 
S~# (~) :=  - [ AT/~t~ ] ~ ~o a (A4.2) 40[O,q~S(x)] 

with [AT/~# ]~ given by equations (3.7). Antisymmetry of M~# [from equation 
(3.7a)] leads to S~#(LP)=-S~(~)  and thus G~#"(LP)=-G~'#(AC), using 
definitions (A4.2) and (A4.1), respectively. 

Substituting the Lagrangian of (A1) into equation (A4.2) yields 
equation (3.6). 

A4. Divergence of the Energy-Momentum Complexes 

Again using a general Lagrangian ~, with associated Euler equations 
(A1.4) and the quantities W~(A~) specified in equation (A3), an immediate 
extension (Gould, 1982) of Theorem 2.11 of NV gives the nonlocal balance 
laws 

fD*rOc' J Loko ** OXoO  q amW~(~) : =  (Z)Okg~+~, agga A dV(z) (A5) 

where 

Okga" kga[~ (x),o,,,~ (x),z, 

and Ok := 0/0X k. Furthermore, 

Substituting the Lagrangian of (A1) into equation (A5) then yields 
equation (3.8). 

APPENDIX B. ADDITIONAL NOTES 

1. Each of these laws is to be widely construed. Thus, it is not 
necessary, for example, that a conservation law be derivable from an 
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equation of motion or vice versa. Furthermore, the term "equation of 
motion," is not restricted to, say, Newton's second law, but can also refer, 
for example, to Schr6dinger's equation or to a system of linear stochastic 
integrodifferential equations. [A recent illustration of the latter is by Volkov 
and Pokrovsky (1983).] 

2. The reader should note that there is no universal agreement con- 
cerning the form of a conservation law. Many authors refer to the former 
type of equation as a "continuity equation" as well as a (local) "conservation 
law" (e.g., Anderson, 1967, pp. 93 and 94; Misner et  al., 1973, pp. 132 and 
152). Other authors refer to the constancy in time for a space-integrated 
quantity, such as W, as a "conservation law" [see, e.g., Goldstein (1980), 
p. 557; Soper (1976), pp. 30-33, where the constancy for different reference 
frames is discussed.] 

3. This should not be taken to imply that such an imbedding can 
always be accomplished (even though it is possible in many cases of physical 
interest). A discussion of this issue for differential equations of motion can 
be found in Havas (1957, 1973). 

4. It may b e  objected as this point that if one converted the 
integrodifferential equations to corresponding differential equations with 
appropriate boundary conditions, then a nonlocal variational calculus would 
be obviated. However, (i) while it is true that some nonlocal equations have 
local counterparts (such as the Lippmann-Schwinger equation for the usual 
Schrgdinger equation) this is not always the case. "There are indeed 
integrodifferential equations that are not equivalent to any system of 
differential equations of finite order," as mentioned by Edelen (in Eringen, 
1976, Vol. IV, p. 76). (ii) When it is possible to go from a nonlocal to a 
local equation wherein the latter has higher-order derivatives, the variational 
imbedding would generally impose more stringent continuity requirements 
on the Lagrangian and may create serious problems for the physical interpre- 
tation of higher-order boundary conditions. (iii) If  one starts out with 
nonlocal equations, it just complicates matters to try and force them into 
a local form. It also tends to obscure the nonlocal aspect of the original 
equations as well as this same aspect of the balance laws, continuity 
equations, or conserved quantities associated with them. 

5. Here it is significant to note that "classical singularities in the 
expressions of the stress field and stored energy are found not present in 
the nonlocal model" (Eringen, 1977). 

6. Eringen (1972)--the first continuum theory of nonlocal fluid 
mechanics. Also see Edelden (1975). 

7. Eringen (1973)--the first continuum theory ofnonlocal electromag- 
netism. Hajdo and Eringen (1979) give an application to electromagnetic 
dispersion. 
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8. Fokker, (1929) first presented the nonlocal variational principle 
for electrodynamics. See also Havas [in Bunge, 1971, p. 31]. 

9. Applications of a nonlocal potential in Schr6dinger's equation can 
be found in Silver and Austern (1980), and more recently, employing a 
quark model of  the deuteron, in Williams et al. (1982). Also, although there 
has been some dispute concerning the cause of  the Aharonov-Bohm effect 
(Roy, 1980, and references therein), some authors have attributed the cause 
to nonlocal effects [see, e.g., the implications of results by Purcell and 
Henneberger (1978)]. 

10. Rzewuski (1958a, b) also has a lengthy discussion of causality 
problems. 

11. See the volumes edited by Eringen (1976); references start on p. 
201 (from Edelen) and on p. 265 (from Eringen). 

12. The first seven articles can be found in essence on pp. 1-95 and 
in the Appendix of NV. 

13. Edelen refers to these quantities as "momentum-energy complexes" 
(p. 83 of  NV) for historical reasons; but, as will be shown, they do not 
necessarily represent the energy-momentum or energy-momentum density. 

14. (a) According to comments by Eddington (1924) concerning the 
"act ion" (whose integrand is the Lagrangian): "From its first introduction 
action has always been looked upon as something whose sole raison d'etre 
is to be var ied--  and, moreover, varied in such a way as to defy the laws of  
nature!" (b) In view of  the widespread belief in and use of Noether's 
theorem it must be stressed: That theorem has been generalized by Edelen 
(1971a-d).  Certain results from his treatment, viz., the general form of  the 
energy-momentum-complex functions and their related divergences [also 
discussed in Edelen (1969a)] have been used and are briefly discussed in 
Appendix A of this paper. 

15. It should be noted that to arrive at the formalism a generalized 
Lagrangian was employed (as shown in Appendix A). It was chosen because 
it was found to apply to a large number of physical systems. [One may, of 
course, choose the other Lagrangians from an equivalence class of  null 
Lagrangians; as done, e.g., in Gould (1982) and in NV.] 

16. Supported in part by NSF Grant PHY 77-28356. 
17. A general theory of  angular momentum for physical situations 

described by a system of LSIDEs has been worked out in Gould (1982) 
and will be further developed in a future paper. 

18. A nice example of a local momentum-energy complex (correspond- 
ing to the LW~, of this paper) applicable to elasticity, arising out of a 
Noetherian treatment and found in "transversality conditions," can be seen 
in Edelen (1981). 
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19. An elementary example is given by Byron and Fuller (1970), 
equation (8.64). For more advanced applications see Foldy and Lock (1979) 
or Silver and Austern (1980). A recent example of a nonlocal SchrSdinger 
equation appearing in QCD for a quark model of the deuteron is by Williams 
et al. (1982). 

20. A brief summary of the following procedure appeared in Gould 
(1986). 

21. (a) Cf. equation (8.65) of Byron and Fuller (1970). [One could 
have arrived at equation (4.8) from the definition of the Hermiticity of H 
along with Green's theorem, but that would have required more work than 
the present method.] (b) For 

U(x,  z) = �89 u ( x ) ~ ( x -  z) + U ( z ) ~ ( z  - x)] 

satisfying equation (4.8) where 8 ( . . . )  is the Dirac delta function], the 
nonlocal term in equation (4.1) reduces, for real U, to 

f (x, z)O(z) dV(z)= U(x)r 
D* 

the usual term involving the potential in the local SchrSdinger equation. 
22. Using equation (4.8), it follows that equation (4.14) becomes 

4 f W 4 ~ -  ( h 2 / 2 M ) ( V r  �9 (V&)+2~[q~(x) U(x ,  z)r  d V ( z ) ]  
D* 

which does not reduce to the usual local expression 

W 4= ( h 2 / 2 M ) ( V ~ b )  �9 (Vq~) + U ( x ) r 1 6 2  

if U(.  ) = (1/2)[" ]{B21} is used for real U (and does not lead to a conserva- 
tion law) even though one does recover the local SchrSdinger equation for 
this U. This does not mean there is an inconsistency, for it is a situation 
that has also occurred in other nonlocal field theories [see, e.g., Rzewuski 
(1958b), p. 245 and p. 243 below equation (8.4)] and may be due to: (a) 
the accumulation of certain nonlocal effects being essentially nonreducible 
to local ones, or (b) the nonrigorous use of the 8 function (e.g., Grotch 
et al., 1982). 

23. For the case k = 1 there (i.e., for a single particle). But note that: 
(a) the rhs of equation (4.24) is not zero, when the equation is put in 
component form, as it is in the more specialized case of his equation (II 
S), and (b) the rhs of equation (4.25) is not zero as it is in equation (I S) 
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of his paper (which is expected, since he uses a time-independent potential 
energy). 

24. See, for example, Havas (1959) and references therein, especially 
Fierz (1939); for the charge-symmetric case [also worked out in Gould 
(1982)] see Le Couteur (1949). 

25. If it was known that there were no sources (i.e., J:::--- 0), then one 
could have arrived at 0t30 ~ =  0 more rapidly because s~t3 and g~t3~would 
not contribute; i.e., in this case O ~ -= 0 ~t3. 

26. In fact the freedom to choose an appropriate null-class element 
was used in constructing the general symmetry-oriented energy-momentum 
complex of Section 3. 

27. This is true even for conservative systems as shown, e.g., by Havas 
(1957) and Hojman and Urrutia (1982). 

28. This notation was suggested by the late Prof. Henri Amar (Temple 
University). 

29. In particular, when p = 0  for the source density then the ~V ~ 
component is equivalent to equation (3.258) on p. 123 of Moiseiwitsch 
(1966). 

30. The ~ component is essentially identical to equation (3.211) of 
Moiseiwitsch (1966). 

31. The integrated W ~ component is essentially identical to ~ of 
equation (3.287) of Moiseiwitsch (1966). 

32. The appropriate W~' coincide essentially with those of equation 
(23b) of Good (1957) but are easier to obtain than by using his method. 

33. The result is hardly surprising if one knows in advance that the 
photon corresponds to a massless spin-1 field. See Soper (1976) for the 
Maxwell results. 

34. It should be noted that such a Lagrangian, more general than that 
of  equation (A1), can imbed nonlocal Euler equations which are also 
nonlinear. Furthermore, the variational imbedding does not require ~o ~ to 
be C 2. [Conditions under which the C 2 requirement need not hold can be 
found in Gould (1982) and in NV.] 
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